Data Analysis in Phon: Where are we now and where should we go?

Greg Hedlund\(^1\) and Todd Wareham\(^2\)

Departments of \(^1\)Linguistics and \(^2\)Computer Science
Memorial University of Newfoundland

July 30, 2010

Joint work with:
- Jason Gedge (University of Alberta)
- Yvan Rose (MUN)
Previous work on “automatic” features in Phon has largely focused on basic (pre-)processing of input data, *e.g.*, syllabification, alignment.

Focus here on current and potential Phon data analysis capabilities.

- Phrase in terms of pattern matching and derivation.
- Emphasis in this talk is on capabilities, not algorithms – let’s dream about what would be useful, and not censor ourselves with what we’ve seen before or what we think might be doable.
- Don’t worry about how these capabilities will be implemented with respect to Phon – again, let’s focus on capabilities.
Organization of this Talk

1. Data Analyses in Phon
2. Pattern-Based Analysis: A General Framework
3. Potential Data Analyses using Phon
4. Conclusions
Data Analyses in Phon: Overview

- Fundamental unit of data storage is a session; sessions can be grouped into longitudinal time-series.
 - A session consists of information about time, place, and participants and one or more tiers of speech-data for each participant.
 - A session time-series consists of one or more sessions involving a common group of speakers that are ordered in time.

- Three phases to data analysis:
 1. Create Query (specify pattern)
 2. Create Search Results (match pattern)
 3. Create Reports (report match results)
What types of patterns do we need to look for?

- **Basic text searching:** Find an instance of a particular string or regular expression.
- **Aligned groups:** Find string patterns across tiers which have been aligned with groups created in Orthography.
- **Aligned phones:** Find instances of various processes, e.g., match, epenthesis / deletion, substitution, metathesis, harmony.
- **Word / syllable types:** Find instances of morphological patterns, e.g., stress patterns, CV(G) sequences.
- **Attributes:** Find instances by entity properties, e.g., session date, participant name / age, language spoken, etc.
Data Analyses in Phon: Creating Queries (Cont’d)

Seven basic types of queries are provided in the application:

- **Text Searching** (Data Tiers.js)
- **Aligned Groups** (Aligned Groups.js)
- **Word / Syllable Types** (CV Sequences.js, Word Shapes.js)
- **Aligned Phones** (Aligned Phones.js, Metathesis.js, Harmony.js)
Each query form has options particular to its function, as well as options for specifying:

- Syllable / Word / Group position (time-domain within utterance).
- Syllable stress.
- Speaker name and age.
- Custom patterns based on user-defined data tier.
• Queries are executed on one or more selected sessions.
• Search results are stored on disk in a relational database.
• Some queries may print additional information or error messages in the displayed console.
• Viewing results within the application
 • Results are highlighted as they are selected, allowing review.
 • Allows deletion of individual results; especially useful for searches
 that may return false positives, *e.g.* metathesis, harmony.

• Exporting results in printable format (*pdf, html, odt, xls*)
 • Report is broken into configurable sections providing inventories,
 result lists, comments, and summaries.
 • Provides more useful information than CSV export (below) and is
 extendible, *e.g.*, add new report sections..

• Exporting results in format usable by other applications (*CSV*)
 • Can select what columns are exported and their ordering;
 • Can only export matched values, – at present, no export of
 inventory counts or derive data (though this may change in future).
Many neat questions are currently hard to answer, *e.g.*,

- Does speaker \(X \) have phone-acquisition order \(Y \)?
- Do the (majority of) speakers in \(X \) have phone-acquisition order \(Y \)?
- Does speaker \(X \) have the same phone-acquisition order as the speakers in \(X \)?
- Is the acquisition of phone \(a \) correlated with accurate production of syllable-form \(b \) in the speakers in \(X \)?

- What is the phone-acquisition order of speaker \(X \)?
- What is the (consensus) phone-acquisition order of the (majority of) speakers in \(X \)?
- What are the subpopulations of the speakers in \(X \) with respect to phone-acquisition order?
- What aspects of syllable-structure are correlated with the acquisition of phone \(b \) in the speakers in \(X \)?

...Can we do better? ...
Pattern-Based Analysis: A General Framework

- Pattern matching vs. pattern derivation:

 Pattern Matching: Get occurrences of pattern P in text T.
 Pattern Derivation: Get set of significant patterns \mathcal{P} that occur in set of texts \mathcal{T}.

- How is this relevant to linguists?

 - **Pattern matching** \Leftrightarrow linguistic hypothesis
 - **Pattern derivation** \Leftrightarrow determining hypotheses that are well-supported by specified data

 - **Pattern matching** \Leftrightarrow verifying specified hypothesis against specified data
Pattern-Based Analysis: A General Framework (Cont’d)
Potential Data Analyses using Phon: Data Types

- In Phon, data currently stored as sessions and session time-series; can also group these into corpora.
- Could also store and operate on data that summarize individual sessions or groups of sessions, e.g.,
 - Set of distinct items in a session (produced phones, word-form CV-types)
 - One or more frequencies

Such summarized sessions may in turn be ordered to make summary session time-series.
- Could also transform time-dimension, e.g., absolute → MLU.

Q1: What are linguistically useful types / summaries of Phon data?
Potential Data Analyses using Phon: Pattern Types

- In Phon, a pattern is currently a segment (possibly across several aligned tiers) in an individual session; using a regular expression, can look for any of a set of segments encoded by that expression.
 - Pattern also includes attributes (speaker name / age-range, etc) that regulate / further restrict instances of segment-match.

Such patterns are time-series over tiers in individual sessions.

- Could also specify richer types of patterns, e.g.,
 - Time-series over (possibly summarized) session time-series (acquisition-order of attempted consonant clusters, frequencies over time of accurately-produced syllable types)
 - Correlations (two or more segments that always co-occur within an individual session or across sessions).

Q2: What are linguistically useful types of patterns?
Potential Data Analyses using Phon: Pattern Matching Modes

- Specify match of pattern P and text T by function $\text{match}(P, T)$ which returns rating of similarity of P and T; may also return alignment of corresponding elements in P and T.
- Matches can be exact or approximate.
- In Phon, patterns are currently only matched exactly.
- Many flavors of approximate matching, e.g., approximate match of corresponding-element values, altered temporal spacing and/or ordering of corresponding elements. Moreover, when deriving patterns relative to a set of texts, patterns may also occur exactly (in all texts) or approximately (in some proportion of the texts, with some frequency in each text).

Q3: What are linguistically useful pattern matching modes?
Potential Data Analyses using Phon: Measures of Pattern Significance

• When deriving patterns, there are typically many patterns that are common to a group of texts; select relevant patterns using some measure of significance, e.g.,
 • Length / complexity of pattern
 • (Minimum / maximum) degree of pattern match
 • Proportion of texts exhibiting pattern
 • Strength of correlation (for correlation-patterns)

Q4: What are linguistically useful measures of pattern significance?
Potential Data Analyses using Phon: Meta-Pattern Analyses

- Could use pattern-matching function `match()` to assess degree of similarity of pairs of sessions or session time-series.
- Many potential uses for such similarities, *e.g.*,
 - Partition group into collection of (possibly overlapping) subgroups
 - Classify new individual into appropriate subgroup
- Partitioning may expose previously unrealized substructure in speaker populations; wrt speech therapy, classification may allow diagnosis of individuals as well as prognoses and suggestions for appropriate therapy.

...??? ...
Conclusions

• There are many possibilities for pattern-based data analyses in Phon, especially with respect to previously-unsupported types of patterns and session time-series – what would you as linguists find useful?
• Your task in this as linguists is to dream – let computer scientists figure out how to make your dreams a reality.