VOICE OR VOT?

FKA: SYSTEMATIC AND INCIDENTAL SOUND ERRORS IN CHILD LANGUAGE PRODUCTIONS

Clara Levelt, Leiden University

Word forms in early child language

- Word forms in child language productions often deviate from their target adult forms.
- Deviations can be systematic or variable
- The big question: what is the source of these deviations in production?

[bat]

[pat]

baard / bart /
(beard)
Sources for deviations

- The lexical representation is incomplete
- The grammar interprets the lexical representation in an overly constrained way
- The phonetic encoding is flawed
- There are physical inabilities to execute the phonetic-articulatory plan
- Timing/planning problems can arise at different levels

Hypotheses

- [-representation]: default interpretations of representational gaps: systematic deviations
- [-grammar]: systematic deviation patterns, cross-linguistic variability possible, categorical deviations from target forms (also: regular correct productions!)
- [-phonetic]: non-categorical deviation patterns (p.e. durational aspects, timing errors)
- [-motor]: systematic inability to produce certain sound(combination)s.
- [-timing/planning]: variable deviations
Dutch stops

- Dutch is a pre-voicing language
 - voiced stops (b d): voicing lead of -4 ms
 - voiceless stops (p t): short lag VOT between 0-25 ms

- Table below from Kager et al. (2007)

<table>
<thead>
<tr>
<th>Voicing Lead</th>
<th>Short Lag VOT</th>
<th>Long Lag VOT</th>
</tr>
</thead>
<tbody>
<tr>
<td>Dutch</td>
<td>-4 ms: b, d</td>
<td>0-25 ms: p, t</td>
</tr>
<tr>
<td>German</td>
<td>16 ms: b, d</td>
<td>51 ms: p, t</td>
</tr>
<tr>
<td>English</td>
<td>32 ms: b, d</td>
<td>59 ms: p, t</td>
</tr>
</tbody>
</table>

Table 1: VOT in Dutch, German and English

Fikkert-Kager group results

- Predominantly devoicing errors:

 Examples of laryngeal errors in Robin’s utterances

 a. douche ‘shower’ tus (1;10.21)
 b. dier ‘animal’ tij (1;10.21)
 c. beer ‘bear’ pi (1;7.13)
 d. bal ‘ball’ pol (1;7.13)
 e. baby ‘baby’ pipi (1;8.10)
 f. thuis ‘home’ doëys (1;5.10)

- Error pattern is independent of Place of Articulation
Fikkert-Kager group results

- Input frequency does not seem to play a role:

<table>
<thead>
<tr>
<th></th>
<th>Labials</th>
<th>Alveolars</th>
</tr>
</thead>
<tbody>
<tr>
<td>p</td>
<td>151</td>
<td>104</td>
</tr>
<tr>
<td>b</td>
<td>220</td>
<td>148</td>
</tr>
<tr>
<td>t</td>
<td>3342</td>
<td>9389</td>
</tr>
<tr>
<td>d</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Table 7: Distribution of voicing in child-directed speech from van de Weijer corpus

Dutch stops in acquisition

- Contrast that needs to be acquired:
 - phonology: [+voice] vs [-voice]
 - representation: monovalent [voice] or binary [±voice]
 - phonetically: -VOT vs. +VOT

- What is the source of voicing errors in Dutch (onset) stops?
 - representation (phonology)
 - initially no [voice] = default –voice
 - phonetic encoding
 - articulatory effort (Kager et al.)
 - initial preference for short lag VOT (in Dutch: voiceless stops)
Variability in stop-voicing

- Representational account seems to predict a categorical development:
 - initial devoicing, across the board
 - acquisition of [voice]: voicing, across the board for [voice] segments

- However: variable productions

<table>
<thead>
<tr>
<th>Session</th>
<th>Robin.1990-03-21</th>
</tr>
</thead>
<tbody>
<tr>
<td>Inventory Result format</td>
<td>All</td>
</tr>
<tr>
<td>Result</td>
<td>Count</td>
</tr>
<tr>
<td>b --> b</td>
<td>4</td>
</tr>
<tr>
<td>b --> p</td>
<td>6</td>
</tr>
<tr>
<td>b --> t</td>
<td>1</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Session</th>
<th>Robin.1990-03-21</th>
</tr>
</thead>
<tbody>
<tr>
<td>Inventory Result format</td>
<td>All</td>
</tr>
<tr>
<td>Result</td>
<td>Count</td>
</tr>
<tr>
<td>d --> d</td>
<td>0</td>
</tr>
<tr>
<td>d --> g</td>
<td>1</td>
</tr>
<tr>
<td>d --> t</td>
<td>3</td>
</tr>
</tbody>
</table>

Effort today

- Get across the inkling: representation is OK but phonetic encoding needs to be worked out

- Data:
 - VOT measurements of longitudinal data
 - voiced and voiceless stops produced by Robin (1;5 – 2;5)
 - Production experiment
 - 9 two-year old Dutch children
Petit Grand Dessert

Results VOT measurements /b/
Results VOT measurements /d/
Results VOT measurements /p/
Results VOT measurements /b/
Results VOT experiment

VOT measurements: method

- Phonex searches:
- measured/measurable:
 - 89 d
 - 65 t
 - 125 b
 - 68 p
VOT measurements: method

- **VOT measurements in PRAAT:**
 - from burst to first zero-crossing of periodicity

/b/ /p/ targets

<table>
<thead>
<tr>
<th>Robin</th>
<th>bab</th>
<th>b-p</th>
<th>b+p</th>
</tr>
</thead>
<tbody>
<tr>
<td>81119</td>
<td>-1.06</td>
<td>1.29</td>
<td></td>
</tr>
<tr>
<td>22199</td>
<td>3.54</td>
<td></td>
<td></td>
</tr>
<tr>
<td>712199</td>
<td>-1.79</td>
<td></td>
<td></td>
</tr>
<tr>
<td>712199</td>
<td>-1.99</td>
<td></td>
<td></td>
</tr>
<tr>
<td>201299</td>
<td>-11.26</td>
<td></td>
<td></td>
</tr>
<tr>
<td>22199</td>
<td>-17.53</td>
<td></td>
<td></td>
</tr>
<tr>
<td>22199</td>
<td>-2.33</td>
<td></td>
<td></td>
</tr>
<tr>
<td>22199</td>
<td>2.24</td>
<td></td>
<td></td>
</tr>
<tr>
<td>100190</td>
<td>-18.92</td>
<td></td>
<td></td>
</tr>
<tr>
<td>22199</td>
<td>-13.15</td>
<td></td>
<td></td>
</tr>
<tr>
<td>22199</td>
<td>-0.35</td>
<td></td>
<td></td>
</tr>
<tr>
<td>22199</td>
<td>-0.69</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Robin</th>
<th>pop</th>
<th>p-b</th>
<th>p-b+p</th>
</tr>
</thead>
<tbody>
<tr>
<td>81119</td>
<td>1.68</td>
<td>-1.52</td>
<td></td>
</tr>
<tr>
<td>100190</td>
<td>1.21</td>
<td></td>
<td></td>
</tr>
<tr>
<td>240190</td>
<td>0.61</td>
<td></td>
<td></td>
</tr>
<tr>
<td>22199</td>
<td>0.12</td>
<td></td>
<td></td>
</tr>
<tr>
<td>22199</td>
<td>0.03</td>
<td></td>
<td></td>
</tr>
<tr>
<td>22199</td>
<td>0.24</td>
<td></td>
<td></td>
</tr>
<tr>
<td>22199</td>
<td>0.01</td>
<td></td>
<td></td>
</tr>
<tr>
<td>70390</td>
<td>0.96</td>
<td></td>
<td></td>
</tr>
<tr>
<td>22199</td>
<td>-7.04</td>
<td></td>
<td></td>
</tr>
<tr>
<td>22199</td>
<td>-0.19</td>
<td></td>
<td></td>
</tr>
<tr>
<td>22199</td>
<td>-1.92</td>
<td></td>
<td></td>
</tr>
<tr>
<td>22199</td>
<td>-0.48</td>
<td></td>
<td></td>
</tr>
<tr>
<td>22199</td>
<td>-3.84</td>
<td></td>
<td></td>
</tr>
<tr>
<td>22199</td>
<td>0.66</td>
<td></td>
<td></td>
</tr>
<tr>
<td>22199</td>
<td>0.97</td>
<td></td>
<td></td>
</tr>
<tr>
<td>22199</td>
<td>-1.01</td>
<td></td>
<td></td>
</tr>
<tr>
<td>22199</td>
<td>-6.84</td>
<td></td>
<td></td>
</tr>
<tr>
<td>22199</td>
<td>0.56</td>
<td></td>
<td></td>
</tr>
<tr>
<td>22199</td>
<td>0.34</td>
<td></td>
<td></td>
</tr>
<tr>
<td>22199</td>
<td>0.89</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>
/b/ /p/ targets

- plot of the mean VOT values over time
 - mean VOT values are significantly different: p < .002
 - productions of /b/ seem to always have negative VOTs

![Graph showing mean VOT values for /b/ and /p/ over time.](image)

/b/ targets

- Both positive and negative values in session 070390

![Graph showing /b/ values for session 070390.](image)
/b/ targets

- Almost exclusively positive values in session 180590

- Exclusively negative values from session 230790 onwards

/p/ targets

- +VOT value increases, then decreases, no SD over time

- Increase occurs at the high point of b=p period. Suggestive, but not significant at this point
/b/ /p/ targets

Could /b/ and /p/ be represented differently?
- Are the [p]s from /b/’s phonetically different from the [p]s from /p/’s?
- Yes, in the first 8 sessions (13 p=p cases): p < .05
 - No in the next two sessions, no more b=p in last three sessions
- Interestingly/puzzling:
 in first 8 sessions
 - b=p mean VOT: 1.5 ms
 - p=p mean VOT: 0.79 ms
- At high-point of b=p:
 - b=p mean VOT: 1.05 ms
 - p=p mean VOT: 1.7 ms

Conclusions /b/ /p/

- Target /b/ shows U-shaped development:
 - sessions 1-4: -VOT
 - sessions 4-9: variable VOT
 - session 10: +VOT
 - sessions 11-13: -VOT
- Means of VOT values for target /b/ and /p/ are significantly different from each other
- VOT values for b=p and p=p significantly different in first 8 sessions, switch in VOT at high-point of b=p.

Different representations?
/d/ /t/ targets

- plot of mean VOT values over time
- mean values differ significantly: $p < .05$

/d/ targets

- more variability +/- VOT than /b/ in initial sessions
- like for /b/, almost exclusively positive – but highly variable – VOT values in session 180590
/t/ targets

- Negative VOT values (8/25) in first 5 sessions

- Increase in VOT value over time (significantly different first vs last sessions \(p < .001 \))

Conclusions /d/ /t/

- More variability in +/- VOT for /d/ throughout
- No significant difference between \(d=t \) and \(t=t \) anywhere
- No specific increase in VOT of \([t]\) at high-point of \(d=t \)
Conclusions /d/ /t/

- Different representations for /d/ and /t/?
 - less clear, but still: different mean VOT values overall
- Possible account
 - /d/ targets are in 53/89 cases (60%) demonstratives, only 4/89 nouns!
 - +/- VOT variability can be tolerated in these items

Comparison /b/ /d/

- Development of /b/ and /d/ (mean VOT values) is pretty parallel!
- /b/ is more “voiced” than /d/ (tolerance account)
Comparison /p/ /t/

- Again: pretty parallel development!

- Significantly different VOT values final sessions (p<.002)
 - “Leiden” accent
 - tekenen (to draw)
 - kas’teel (castle)
 - thuis (home)

Tentative conclusion

- There seems to be a representational difference between voiced and voiceless stops
 - voiced stops show parallel development
 - voiceless stops show different parallel development

- Initial negative VOTs for /b/ /d/ targets imply that articulation is not the problem,

- Phonetic encoding of phonological difference has to be figured out
VOT experiment: rationale

- If phonological representation is OK...
 - voiced stops have a [voice] representation
- but phonetic encoding is iffy...
- maybe, better performance with voiced consonants can be provoked in children’s productions

Base-Berk & Golderick 2009 study

- Looked at influence of neighborhood density on production of VOT in adults
- Experiment 2: participant A has to tell participant B to click on one of three words that appear on screen:

<table>
<thead>
<tr>
<th>Condition</th>
<th>cod</th>
<th>god</th>
<th>yell</th>
</tr>
</thead>
<tbody>
<tr>
<td>Context Condition</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>No Context Condition</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>No Competitor Condition</td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

- English: longer VOTs were expected
Results experiment 2

- VOT of words with minimal pair neighbors is significantly longer
- VOT increases even more if competitor is presented in context condition: context > no context > no competitor (82.5) (77.4) (72.4)

Increase seems very small...

- VOT increases with the same proportion across the three different places of articulation:
 - 68.9 ms versus 65.7 for /p/
 - 84.3 ms versus 80.3 ms for /t/
 - 95.5 ms versus 90.6 ms for /k/
Method

- Picture naming experiment, presented in PPT
- 6 different minimal pairs /b/-/p/ = b+ condition
- 3 different minimal pairs /d/-/t/ (x2) = d+ condition
- 6 /b/ + 3 /d/ (x2) “no competitor” words
- context condition (b+)
- no-context condition (b-)
- practice session with individual pictures
- 9 two-year old children (4F, 5M)
- digital recording, files stored in PHON
- VOT analysis in PRAAT
Results

- 35 b+/d+ productions
- 29 b-/d- productions
- No significant difference between b+ and b- VOT values (b+ mean VOT -0.59, b- mean VOT -0.38)
- Significant difference between d+ and d- VOT values (p<.05, d+ mean VOT -1.33, d- mean VOT 3.2)
Discussion

Why different outcomes for /b/ and /d/?
- measured all productions of /b/ and /p/ targets:
 - significant VOT difference
- measured all productions of /d/ and /t/ targets
 - no significant VOT difference!

Conclusions experiment

If significant VOT difference between target voiced and voiceless plosives is present:
- no significant VOT improvement can be provoked for target voiced plosives

If no significant VOT difference is present:
- VOT improvement can be provoked

Implication: [voice] must be present in representation (in both situations)
- otherwise no improvement/non significant difference would be expected
General conclusions

- Both sets of data seem to show the same thing:
 - different behavior of labial vs coronal plosives
 - possibly because initial /d/ words are more tolerant of VOT variability
 - an inkling that the phonological representation is ok:
 - [voice] is present in the representation
 - significant VOT differences throughout developmental period, between (target) voiced and voiceless plosives, despite their being "incorrect" and/or variable, in Robin’s case
 - significant VOT difference present OR significant VOT improvement possible, in experiment
 - Source of voicing errors = phonetic encoding

THANK YOU!!

- and
 - Yvan!
 - The rest of the PHON team
 - the participating kids and their parents
 - the students who did the production experiment:
 - Andrea Spruijt, Conny van Paridon, Thijs Nielen
 - my PhD students, for discussions, coffee & tea
 - Marijn van ‘t Veer, Margarita Gulian, Kathrin Linke, Sita ter Haar
 - the funding agency

NWO
Nederlandse Organisatie voor Wetenschappelijk Onderzoek