Development of a Weighted Accuracy Measure for implementation in Phon

Cynthia Core and Suresh Subramanian

The George Washington University
Introductions

- Cynthia Core
 - Assistant Professor, Department of Speech and Hearing Science, GWU

- Suresh Subramanian
 - Graduate student in Computer Engineering, GWU
Acknowledgements

Erika Hoff
Department of Psychology, Florida Atlantic University
http://psy.fau.edu/~hoff/LangDevLab/index.htm

Language Development Lab Managers
Melissa Senor, Rosario Rumiche

Graduate Students
Kelly Bridges, Marisol Parra, Silvia Place, FAU
Kristen Dorsey, GWU

Funding Sources:
Xx R03 grant number
NICHD HD054427-01S1
Florida Atlantic University
Collaborators

- Erika Hoff, Florida Atlantic University
- Jim Mahshie, George Washington University
- Tiffany Finnegan, Gallaudet University
- FAU Language Development Lab
- GWU students
My Projects

- First Language Bilingual Acquisition
 - Focus is word learning

- Speech Perception/Production interface in young children with cochlear implants
 - Focus is speech perception
Bilingual Projects

- Data collection in Florida

- Phonological Memory and Language Learning
 - Investigated the role of phonological memory in early vocabulary development in monolingual and bilingual children
 - 56 monolingual English speaking children
 - 47 bilingual Spanish-English speaking children
 - Data at 3 times, 22-, 25-, and 30-months
 - Real word and nonword repetition in English and Spanish

- Four-year follow-up
 - Real word and nonword repetition
 - Bilingual English Spanish Assessment (Goldstein, Peña)
Ongoing…

- Environmental Correlates of Bilingual Language Development
 - Looks at the role of linguistic experience in language development – family constellation, relative amount of input in each language
 - 170 bilingual children
 - Real word and nonword repetition
 - Bilingual English-Spanish Assessment

- Various spontaneous samples, 22-, 25-, 30-month, and 4-year-old bilinguals
Cochlear Implant Project

- Data collection ongoing in Washington, DC metro area
- Perception of phonetic features and production of those features
 - Consonant place, manner, voicing, vowel height, advancement, stress, syllable number, intonation
 - 40+ children with cochlear implants
 - 3 to 5 years
 - 2 ½ year longitudinal study (5 visits)
- Speech production measures
 - Goldman-Fristoe Test of Articulation
 - Elicited multisyllabic words with varying stress patterns, questions, statements
Data to be analyzed

- 12 Real Words
 - 4 each, 1-, 2-, 3-syllable
 - From MacArthur-Bates CDI

- 12 Nonwords
 - Phonologically matched to real words for onsets/rhymes and stress patterns

- Elicited through toy naming game – imitation
 - Look, his name is ‘Kog’ Can you say “Kog?”
Examples of Stimuli

- Dog, juice, cat, book
 - Kog, boos, dat, jook

- Pan, luz, tren, sol
 - Lan, trus, sen, pol

- Banana, telephone, lollipop, pajamas
 - Bajapop, tellina, lolemas, panaphone

- Muñeca, gallina, caballo, pelota
 - Gañeca, calota, peballo, mullina
Problems in analysis using PCC

- If a child doesn’t repeat an elicited item
 - Score is 0

- If a child says [da:] for ‘cat’
 - Score is 0

- If a child says [us] or [dus] for ‘juice’ those are the same

- This makes it impossible to differentiate non-repeaters from children who are actually building good phonological systems
Why quantify accuracy?

- Can answer questions of how children change in production abilities over time
- Can answer questions of how groups of children might be different
 - ‘Are bilingual children as accurate in productions of English words as monolingual English speaking children?’
 - ‘Does a child have a speech sound disorder?’
 - Describe severity of disorder
- Can help with item analysis
 - Might be able to inform us about variability of production within-child
- Need accuracy measures for statistical analysis for group analyses
 - Do children with small vocabularies have poor production skills relative to children with large vocabularies
Need for accuracy measures

- Manual calculations of accuracy are insufficient – time-consuming and prone to inaccuracies in calculation for large databases

- Need ways to efficiently calculate accuracy
 - Lots of computational power is required

- By child
 - Individuals or groups

- By target
 - Subsets of targets (real v. nonwords, 1 v. 3-syllables, iambs v. trochees, etc)

- By word-position – onset/rhyme, coda consonants, even by features
Wishlist

- Reflect complexity of items produced
- Incorporate principles of markedness and normal development
- Variability in assigned values
- Account for all kinds of errors – deletions, substitutions, additions
 - For consonants and vowels
- Useful for elicited samples and connected speech
- Validated, psychometrically sound
- Grounded in theory
What’s available?

- Standardized tests of articulation
- Percent Consonants Correct (PCC)
 - and its variants (PCC-R, PCC-A, PPC)
 - (e.g., Shriberg et al., 1997)
- Phonological Mean Length of Utterance; Proportion of Whole Word Proximity
 - (Ingram & Ingram, 2001; Ingram, 2002)
- PPC – Percent Phonemes Correct
 - (Dollaghan, Biber, & Campbell, 1993)
- DIY - Excel
Scoring of a consonant segment is binary
- Whether incorrect is omitted or differences in phonetic features
- All consonants are treated equally
- Omissions, distortions, deletions all rated equally
- Common/uncommon substitutions/deletions counted the same

Additions are not counted as incorrect

Vowels aren’t considered

Word shape is not considered

No way to differentiate noncompliance (refusal to name or repeat) from inaccurate production
PMLU and PWP

- **PMLU =** Phonological Mean Length of Utterance
 - Each segment produced by child gets a point
 - Up to number of segments in target word
 - Each correct consonant gets another point
 - ‘cat’ produced correctly would get 5 points
 - If child said [kati] it would still be 5 points

- **PWP =** Proportion of Whole Word Proximity
 - Child’s PMLU/Target word PMLU

- **PWC =** Percent Whole Word Correctness
 - How many words in sample a child produces accurately
Limitations of PMLU/PWP

- Doesn’t consider complexity of segments – adjacencies or clusters, just total number of consonants and accuracy
- Does not address vowel accuracy
- PMLU doesn’t track growth over time very well
 - (cf Taelman, 2005; Saaristo-Helin, 2009)
- PWP is better than PCC at information about word shape, but it doesn’t differentiate common from unusual errors
- Not sure how these measures deal with distortions which are clinically relevant
The vision:

- A tool that allows us to conduct a more fine-grained analysis would allow
 - Differentiation of repeaters and non-repeaters
 - Following growth over time
 - A way to capture common v. unusual patterns

- Combine the power of Phon’s powerful search abilities (e.g. to identify all aligned obstruent coda productions) with a calculator that will tell you quickly whether stops are produced more accurately than fricatives
Weighted Speech Sound Accuracy Measure - WSSA

- Adaptation of a measure developed by Oller & Ramsdell (2006)
 - Designed for LIPP (Logical International Phonetics Program, Kim Oller)
- Kim Oller, Heather Ramsdell, Jonathan Preston, Mary Louise Edwards, Stephen Tobin
- Feature-based approach (grounded in phonetics/phonology)
- “Common” errors involve small penalties “Atypical” errors involve larger penalties (markedness, developmental patterns)
- Considers both consonants and vowels
An algorithm based on two tiers
- Word shape match and segment accuracy

Assigns a value to a child’s production based on its match to a target

Two tiers of accuracy production
- Global Structural Agreement - Word shape match
- Featural Agreement – feature match at the segmental level

WSSA = Global Structural Agreement x Featural Agreement

Some principles are established for alignment
- Matching nuclei, then consonants with minimal discrepancies and no reordering
Global Structural Agreement

- Number of aligned segments produced/total number of segments

- [da] / dog
 - GSA Value .66
 - 2/3 segments produced
 - Reflects omission of final consonant

- [di] for ‘kitty’
 - GSA Value .5
 - 2/4 segments produced
 - Reflects omission of CV

- Additions are scored as 0
 - ‘kog’ -> [kagi] then total segments are 4 and target contained 3 segments, so GSA value is .75
Mean Featural Agreement

- Each segment receives a value for featural agreement
 - Consonants and vowels start with a value of 1 each
 - Deductions are made according to type of error

- Segment values are averaged

- This gives Mean Featural Agreement

'juice' -> [du]

\[
MFA = .84 + 1 = 1.84/2 = .92
\]
WSSA Weights: Consonants

<table>
<thead>
<tr>
<th>CONSONANT FEATURE</th>
<th>Penalties</th>
</tr>
</thead>
<tbody>
<tr>
<td>Manner (0.333)</td>
<td></td>
</tr>
<tr>
<td>Huge Manner</td>
<td>-0.3333</td>
</tr>
<tr>
<td>- uncommon errors, damaging to intelligibility</td>
<td></td>
</tr>
<tr>
<td>Big Manner</td>
<td>-0.25</td>
</tr>
<tr>
<td>- Less common in phonological development</td>
<td></td>
</tr>
<tr>
<td>Small Manner</td>
<td>-0.1666</td>
</tr>
<tr>
<td>- Common errors in phonological development</td>
<td></td>
</tr>
<tr>
<td>Teeny Manner</td>
<td>-0.0833</td>
</tr>
<tr>
<td>- Minor phonetic errors</td>
<td></td>
</tr>
<tr>
<td>Place (0.333)</td>
<td></td>
</tr>
<tr>
<td>Huge Place:</td>
<td>-0.333</td>
</tr>
<tr>
<td>- Uncommon, very damaging to intelligibility</td>
<td></td>
</tr>
<tr>
<td>Big Place</td>
<td>-0.25</td>
</tr>
<tr>
<td>- Less common in phonological development</td>
<td></td>
</tr>
<tr>
<td>Small Place</td>
<td>-0.1666</td>
</tr>
<tr>
<td>- Typical errors in phonological development</td>
<td></td>
</tr>
<tr>
<td>Teeny Place</td>
<td>-0.0833</td>
</tr>
<tr>
<td>- Phonetic errors in English, based on small changes in tongue placement.</td>
<td></td>
</tr>
<tr>
<td>Voicing (0.333)</td>
<td></td>
</tr>
<tr>
<td>Huge Voicing</td>
<td>-0.3333</td>
</tr>
<tr>
<td>- Uncommon</td>
<td></td>
</tr>
<tr>
<td>Small Voicing</td>
<td>-0.2222</td>
</tr>
<tr>
<td>- Common</td>
<td></td>
</tr>
<tr>
<td>Teeny Voicing</td>
<td>-0.1111</td>
</tr>
<tr>
<td>- Phonetic changes</td>
<td></td>
</tr>
</tbody>
</table>
WSSA Weights: Consonants

For example: Place of articulation

<table>
<thead>
<tr>
<th>Place</th>
<th>Weight</th>
<th>Consonants</th>
<th>Relations</th>
</tr>
</thead>
<tbody>
<tr>
<td>Huge Place</td>
<td>-.333</td>
<td>Dorsal ↔ Labial</td>
<td>Dorsal ↔ Non-Glottal</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Glottal ↔ Non-Glottal</td>
<td></td>
</tr>
<tr>
<td>Big Place</td>
<td>-.25</td>
<td>Coronal ↔ Labial</td>
<td>Coronal → Dorsal</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Coronal → Dorsal</td>
<td>Coronal → Palatal</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Alveolar → Palatal</td>
<td>Palatal → Dental</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Palatal → Dental</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>Retroflex ↔ Not Retroflex</td>
<td></td>
</tr>
<tr>
<td>Small Place</td>
<td>-.1666</td>
<td>Linguadental ↔ Labiodental</td>
<td>Linguadental ↔ Alveolar</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Dental ↔ Alveolar</td>
<td>Dental ↔ Alveolar</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Palatal → Alveolar</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>Dorsal → Alveolar</td>
<td></td>
</tr>
<tr>
<td>Teeny Place</td>
<td>-.0833</td>
<td>Bilabial ↔ Labiodental</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>Labialization</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>Blading</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>Tongue Advance/Retract</td>
<td></td>
</tr>
</tbody>
</table>
WSSA Weights: Vowels

<table>
<thead>
<tr>
<th>Vowel Feature</th>
<th>Weight</th>
<th>Penalties</th>
<th>Example</th>
</tr>
</thead>
<tbody>
<tr>
<td>Height</td>
<td>0.40</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Huge Height</td>
<td></td>
<td>-.40</td>
<td>4 step height change /i/ ↔ [a]</td>
</tr>
<tr>
<td>Big Height</td>
<td></td>
<td>-.30</td>
<td>3 step height change /ɪ/ ↔ [a]</td>
</tr>
<tr>
<td>Small Height</td>
<td></td>
<td>-.20</td>
<td>2 step height change /i/ ↔ [e]</td>
</tr>
<tr>
<td>Teeny Height</td>
<td></td>
<td>-.1</td>
<td>1 step height change /a/ ↔ [ɛ]</td>
</tr>
<tr>
<td>Advancement</td>
<td>0.40</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Big Front</td>
<td></td>
<td>-.40</td>
<td>Front ↔ Back /o/ ↔ [e]</td>
</tr>
<tr>
<td>Small Front</td>
<td></td>
<td>-.20</td>
<td>Front ↔ Central or Back ↔ Central /i/ ↔ [ɔ]</td>
</tr>
<tr>
<td>Nasalization</td>
<td>0.1</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Small Nasal</td>
<td></td>
<td>-.10</td>
<td>Not Nasal → Nasal /a/ → [å]</td>
</tr>
<tr>
<td>Rounding</td>
<td>0.1</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Small Rounding</td>
<td></td>
<td>-.10</td>
<td>Round ↔ Not Round /ʌ/ ↔ [ɔ]</td>
</tr>
</tbody>
</table>
Computational Example \(\text{WSSA}\)

<table>
<thead>
<tr>
<th>Gloss</th>
<th>“</th>
<th>o</th>
<th>l</th>
<th>l</th>
<th>i</th>
<th>p</th>
<th>o</th>
<th>p</th>
<th>“</th>
</tr>
</thead>
<tbody>
<tr>
<td>Target</td>
<td>/</td>
<td>l</td>
<td>a</td>
<td>l</td>
<td>i</td>
<td>p</td>
<td>a</td>
<td>p</td>
<td>/</td>
</tr>
<tr>
<td>Child Production</td>
<td>[</td>
<td>j</td>
<td>a</td>
<td>j</td>
<td>i</td>
<td>p</td>
<td>a</td>
<td>p</td>
<td>]</td>
</tr>
</tbody>
</table>

- Weighted Speech Sound Accuracy = Global structural agreement x Featural agreement
 - GSA = 1
 - MFA = .95
 - WSSA = .95
 - PCC = .40 and PWP = .63
Computational Example (WSSA)

<table>
<thead>
<tr>
<th>Gloss</th>
<th>“t e l e p ho n“</th>
</tr>
</thead>
<tbody>
<tr>
<td>Target</td>
<td>(/ t \varepsilon l f o n /)</td>
</tr>
<tr>
<td>Child Production</td>
<td>([k \varepsilon p o n])</td>
</tr>
</tbody>
</table>

- GSA = .71
- MFA = .86
- WSSA = .6
- PCC = .25 and PWP = .55
Computational Example

<table>
<thead>
<tr>
<th>Gloss</th>
<th>“d”</th>
<th>“o”</th>
<th>“g”</th>
<th>“”</th>
</tr>
</thead>
<tbody>
<tr>
<td>Target</td>
<td>/ d</td>
<td>a g</td>
<td>/</td>
<td></td>
</tr>
<tr>
<td>Child Production</td>
<td>[g</td>
<td>a]</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

- GSA = .66
- MFA = .75
- WSSA = .57
- PCC = 0 and PWP = .4
Psychometric Information

- **Validity**
 - Correlates with existing measures of phonetic accuracy in toddlers and adolescents
 - Distinguishes productions by children with speech sound disorders and typically developing children
 - Sensitive to growth in phonetic accuracy as a child gets older

- **Reliability**
 - Between transcribers
 - Between different word lists
Phon implementation of WSSA

- Would work as a plug-in to Phon
- Will allow users to select participants, targets, and hopefully word position
- Implementing the measure in Phon would allow more users to validate the measure
 - Develop similar measures for other languages
 - Validate on larger groups of children
It could look like this...

New Tier for Accuracy Calculation
Challenges

- Programming
 - Initial interface 😊
 - Teaching a programmer about linguistics

- Measurement
 - How to differentiate weighting by word position
 - Consider prevocalic voicing and final devoicing
 - How to deal with stress placement errors
 - What about harmony or errors? Cluster reductions? Epenthesis? Fusion?
 - How to assess intermediate productions?
 - Allophonic variation?
 - Should consonants and vowels be weighted equally?

- Other languages - Spanish
Where to go next?

- Implementing WSSA first
- Should weightings be adjustable/customizable?
- Feedback?
 - Utility?
 - Adjustments?